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The geometry of planar domino-style normal faults 
above a dipping basal detachment 
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Abstract---Geometrical analysis of planar domino-style normal faults rooted into a dipping basal detachment 
fault allows derivation of equations which relate: (1) horizontal extension within the upper plate; (2) dip of the 
detachment; (3) final fault dips; (4) rotation that faults and beds undergo; and (5) net slip on domino-style faults. 
Past geometrical models have focused on extremely idealized and non-unique geometries, in which domino-style 
faults are parallel and similar cut-off points are all at the same elevation after faulting. This corresponds to evenly 
spaced domino-style faults above a horizontal detachment. Considering non-parallel faults and dipping detach- 
ments introduces unique geometries, which allows calculation, for example, of permissible depth ranges to the 
detachment. Horizontal extension varies significantly: (11 with dip of the detachment; and (2) for synthetic and 
antithetic cases, in which the domino-style faults dip in the same or opposite direction, respectively, as the 
detachment, When other factors (e.g. rotation and fault dips) are held constant, horizontal extension greatly 
increases for moderate detachment dips and moderately decreases for antithetic detachment dips, as compared 
to the horizontal detachment case. This is important because the synthetic case has been widely reported. 

I N T R O D U C T I O N  

ARRAYS of domino-style  normal  faults (Fig. 1), which 
evolve through simultaneous rotat ion of both  faults and 
beds,  have been recognized for over  75 years ( E m m o n s  
& Gar rey  1910). They have been recognized at many  
scales, with geometr ies  ranging f rom planar  to curvi- 
planar  and parallel to non-parallel  (e.g. Thompson  1960, 
Mor ton  & Black 1975, Proffet t  1977, Rehrig & Reynolds 
1980, Stewart  1980, Chamber l in  1978, 1983, Wernieke  
& Burchfiel 1982, Gans  & Miller 1983, Jackson & Mac- 
Kenzie 1983, Wernicke  et al. 1984, 1985, Axen  1986).. In 
the western Uni ted  States, domino-style  normal  faults 
occur above gently dipping de tachments  (e.g. Wernicke  
& Burehfiel 1982, Gans  & Miller 1983, Wernicke et al. 
1984, 1985). 

Relatively few geometrical  analyses have addressed 
domino-style fault arrays. These fall into two categories: 
(1) palinspastic analyses (e.g. Proffet t  1977, Chamber l in  
1983, Gans  & Miller 1983, Wernicke  et al. 1984, 1985, 
Axen  1986); and (2) simplified geometr ical  models  (e.g. 
E m m o n s  & Gar rey  1910, Thom ps on  1960, Mor ton  & 
Black 1975, Wernicke  & Burchfiel 1982, Jackson & 
MacKenzie  1983). In these geometr ical  models ,  the 
domino-style  faults are shown as planar ,  parallel and 
evenly spaced. All similar cut-off points are shown in 
cross-section to lie on a horizontal  line (Figs. 1 and 2). 
These near-perfect  conditions are seldom substantiated 
by field investigations. If  a de tachment  underlies the 
domino-faul t  array,  the conditions above correspond to 
the de tachment  being horizontal  (Fig. 2). Equat ions  
derived f rom the models  give horizontal  extension in 
terms of the fault dip and the amount  of  rotat ion that  the 
faults and beds undergo (Fig. 1). 

*Present address: Department of Earth and Planetary Sciences, 
Harvard University, Cambridge, MA 02138, U.S.A. 

A model  is presented here that  allows for non-parallel ,  
unevenly spaced domino-style faults and a dipping basal 
detachment .  As well as being somewhat  more  realistic, 
the model  presented has the advantage of producing 
unique  geometr ies  which allow for r ea r rangement  of  the 
basic equations to solve for quantit ies previously t reated 
as independent  variables,  but which may not be known. 

BEFORE 

~90" 

AFTER 

Fig. 1. Parallel domino-style normal faults above a horizontal detach- 
ment. (a) Before extension. ¢i, initial fault dip; L0, initial horizontal 
distance between faults; t, thickness of fault blocks measured perpen- 
dicular to faults. (b) After extension. (c) Enlargement of upper 
portions of two fault blocks, showing variables used in Thompson's 
(1960) equation for horizontal extension (% H.E.). In this situation % 
H.E. = [(L - Lo)/Lo] x 100 --- [sin (¢ + 0)/sin ¢ - 1] × 100.0, amount 
of rotation of beds and faults; ¢, final fault dip; L, final horizontal 
distance between faults; St, slip due solely to this type of rotational 
faulting event. (d) Unevenly spaced, parallel, domino-style faults 

above a horizontal detachment. 
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Fig. 2.(a) Three possible initial geometries for domino-style normal 
fault--detachment systems. The horizontal detachment ease (b), the 
antithetic case (c), and the synthetic case (d) after extension. In (c) and 
(d) a non-rotational amount of slip, S,, must be subtracted from or 
added to the rotational amount of slip, S ,  obtained from (b), to give 
the total slip, St. d, dip of the detachment. The vertical dotted lines 
show the initial horizontal width of three fault blocks. Note that for 
identical rotations and fault dips (0 -- 15" and @ = 45*, in this example), 

widely different amounts of horizontal extension occur. 

For example, if domino-style faulting affects previously 
deformed rocks, bedding dips will not indicate rotations 
during the domino-style faulting event. 

The applicability of these geometrical models is 
limited to situations where the underlying assumptions 
are valid. Some of the equations below reasonably 
approximate naturally occurring geometries. Others are 
based on assumptions which are rarely or never substan- 
tiated by field investigations. The equations presented 
below represent idealized end-member geometries. 
Each equation should be evaluated critically with regard 
to its advantages and limitations in any particular situ- 
ation. For example, some of the equations may serve 
well as a guide to cross-section construction, but should 
be accompanied by section balancing techniques and 
palinspastic reconstructions. In general, these equations 
are most applicable to detailed geologic map data, which 
best allow critical evaluation of the validity of underlying 
assumptions for a particular case. 

ASSUMPTIONS 

The geometric models and resulting equations rely on 
all or some of the assumptions considered below. These 
assumptions are then evaluated in more detail after the 
equations have been derived. 

Assumption 1. The domino-style normal faults and 
basal detachment are planar. Gently curviplanar 
domino-style normal faults have been documented by 
Proffett (1977), Chamberlin (1978, 1983) and Gans & 
Miller (1983). These fault planes generally have 5-10 ° of 
curvature, which is enough to affect the results of the 
equations presented. Other workers have documented 
planar domino-style normal faults, and have produced 
successful palinspastic reconstructions (Wernicke et al. 
1984, 1985, Axen 1986) that are consistent with the 
seismic and geomorphological constraints (Jackson & 
MacKenzie 1983). Detachments are generally gently 
curviplanar on a broad scale (e.g. Crittenden et al. 
1980), but can probably be approximated by a planar 
surface on the scale of a few hangingwall domino-style 
normal faults. 

Assumption 2. Fault blocks are rigid and do not 
deform internally. This requirement is most likely to be 
met at the scale of detailed mapping, but probably is not 
true at Smaller scales. It is most likely to be true at 
considerable distances above the basal detachment, and 
is certainly invalid adjacent to the detachment. 

Assumption 3. No large translations have occurred on 
the detachment subsequent to domino-style faulting. 
The models are based on initial conditions prior to 
domino-style faulting, and final conditions after domino- 
style faulting has ceased. Problems occur, for example, 
if large translations after domino-style faulting leave 
behind fault-bounded slivers cuts from the base of the 
domino array (e. g, Lister et al. 1984), causing misleading 
relations between the faults and detachment. However, 
if the domino-fault array is carried passively after 
domino-style faulting is over, it can still contain impor- 
tant information about quantities such as detachment 
dip or depth to the detachment. Alternatively, if large 
translations are apparent, then the equations will pro- 
vide constraints on the conditions at the initiation of 
detachment faulting. 

Assumption 4. All of the domino-style faults moved 
simultaneously. The overprinting of one set of domino- 
style normal faults by another has been documented in 
the Yerington District (Proffett 1977), and Snake, ScheU 
Creek and Egan Ranges of Nevada (Gans & Miller 
1983). Care must be taken to avoid applying the 
equations to faults of different generations. 

PARALLEL FAULTS 

In this section, I consider parallel faults above a 
dipping detachment, and derive equations for extension, 
dip of the detachment, and rotation, based on data that 
can be collected in the field or measured from cross- 
sections. If domino-style faults are evenly spaced above 
a horizontal detachment, similar cut-off points of an 
originally horizontal layer will also form a horizontal 
datum (Fig. 1). If the domino-style faults are unevenly 
spaced, however, this is not true. 
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Dip of the detachment 

Figure 2 shows that the total slip, St, on domino-style 
faults above a dipping basal detachment can be thought 
of in terms of two components: (1) a rotational compo- 
nent, S~, equal to the slip above a horizontal detachment 
(Fig. 2b); and (2) a non-rotational component, Sn, due 
to the different space problem that occurs above a 
dipping detachment. In the case of synthetic dominoes 
(Fig. 2d), St > S~, and in the case of antithetic dominoes 
(Fig. 2c), St < Sr. Likewise, for the synthetic case 
horizontal extension will be greater than predicted by 
Thompson's equation (Fig. 1), and less for the antithetic 
case. For evenly spaced faults, a line drawn through 
similar, originally horizontal cut-off points will dip in the 
same direction as the detachment, although by a differ- 
ent amount, allowing the dip direction of the detachment 
to be determined. However, if the faults are unevenly 
spaced (Fig. ld), a line drawn through similar cut-off 
points will not necessarily dip in the same direction as the 
detachment. In that case, St (measured from sections 
drawn through the fault in question) must be compared 
with S~ to determine the dip direction of the detachment. 
Sr is easily determined by applying the law of sines to the 
triangle with sides L, L0, and Sr in Fig. l(b): 

S~ - L0 sin 0 (1) 
sin q~ 

S~ must be calculated using L0 from the footwall block, 
because it depends on the thickness of that block (Fig. 
ld). 

The dip of the detachment, d, can be determined by 
considering the hypothetical void left at the base of a 
rigid fault block (Fig. 3). Applying the law of sines to 
triangle EGI gives 

St = f0 sin 0 
sin (q~ - d ) '  (2) 

where)C0 = IG is the width of the fault block measured 
along the detachment surface prior to faulting. From 
triangle GHI,  

t t 
)Co - sin (~i - d) - sin (~ + 0 - d)" (3) 

, r , , - '  J - ? .  
i j  , "  , ? 

, ~  r rx~/¢d J 

Fig. 3. The hypothetical void space (stippled) left by a domino-style 
faulting event above a dipping basal detachment, f0, original, and f,  
final lengths (respectively) of the block, measured along the detach- 

ment; t, thickness of the fault block. 

Substituting (3) into (2), rearranging, and solving for d 
we have 

0 1 [ 2 t s in0 . ]  (4) 
d =  ~0 + - ~ - - ~ a r c c o s  cos0  St 

where d is defined as positive for the synthetic case and 
negative for the antithetic case. 

The depth to the detachment cannot be uniquely 
determined for parallel faults. This is not true for non- 
parallel faults, as will be shown below. 

Rotation 

In areas where rocks were deformed prior to domino- 
style normal faulting, or in areas of non-stratified rocks, 
the rotation, 0, must be determined. This can be 
obtained from the total slip, thickness of the footwall 
block, and dip of the detachment. Applying the law of 
sines to triangles in Fig. 3 gives St/sin 0 = f0/sin (q~ - d). 
Also,f0 = t/sin (q~ + 0 - d). 

Combining these two and simplifying gives 

,j'st[1 --.cos (2~ - 2d)l ] 
0 = arc tan L 2t - St sin (2¢ -- ~ J "  (5) 

Amount of extension 

Per cent horizontal extension (% H.E.)  can be written 
as a function of ~ and 0. From Fig. 4 it is seen that 

L"= L ' +  AL (6) 

and that 

AL = Sn cos q~. (7a) 

From the law of sines, 

L ' =  L 0 s i n ( 1 8 0 - q ~ - 0 )  = 
sin q~ 

Lo sin (~ + O) 
sin 

(7b) 

The per cent horizontal extension is given by 

L " - L 0 .  x 100=  - 1 x 100. % H.E. = ~-T[/. 

(8) 
SYNTHETIC 

_ ~ . ~ _  , 12' ,I 
aL y- L'., q 

. . . . .  
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Fig. 4. Synthetic and antithetic cases of parallel, domino-style normal 
faults above a dipping detachment. L '  is the horizontal distance 
between faults that would result if the detachment were horizontal. L" 
is the horizontal distance between faults above a dipping detachment 

and ~L is the difference. 
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Combining equations (6)-(8) gives 

[ 1 % H.E. = s in (~  + 0) + Sn 
s i n s  ~ c o s O  - 1 x 100. 

(9) 

Sn is determined by subtracting S,, calculated from (1) 
for the hangingwall block, from St, which is measured. 
Sn is defined as positive for the synthetic case, and 
negative for the antithetic case. 

Although (9) is useful for application to geological 
maps and sections, it is convenient to consider % H.E.  
as a function of rotation and fault dips only. For this, we 
need an expression for S, in terms of O, rp and d. From 
Fig. 3 it can be seen that St = ~ - ~-H. Also, 

and 

EH = t cot (qb - d)  

G H =  tcot(q~ + 0 - d ) .  

Therefore, 

St = E H -  GH = t [ c o t ( q ~ -  d) - cot(q~ + 0 -  d)]. 
(10) 

Sr is obtained from (1) for the hangingwall block, and 
Sn = St - St, so 

S. = t [ c o t ( ~ -  d ) -  cot(q~ + 0 -  d)] L 0 s i n 0  
sin q~ 

(11) 

Substituting (11) into (9) and simplifying gives 

% H.E.  = /cos 0 + t cos__.___.~0 [cot (q~ - d)  
l L0 

- cot (q~ + 0 - d)] - 1} × 100. (12) 

For evenly spaced parallel faults, t/Lo = sin q~i = sin (q~ + 
0) (Fig. 1), so (12) simplifies to 

% H.E.  = (cos 0 + sin (q) + 0) cos q~ [cot (q~ - d) 
- co t (q~+ O - d ) ] -  1} x 100. 

(13) 

Figure 5 is a plot of % H.E.  calculated using (13), for 
a variety of detachment dips, d, for the case where ~0i = 
60 °, and 0 varies from 0 ° to 25 °. Note the dramatic 
increase in extension for the synthetic cases with low to 
moderate detachment dips and rotations when com- 
pared to the horizontal detachment case (d = 0°). 

Per cent extension parallel to the detachment (% Ea) 
can also be figured by considering the void space left 
below the rigid fault block (Fig. 3). Equation (8) is used, 
with L" = E-'] and LI) = G-]. Then, 

L" = EI - 
sin (q~ - d) 

and 
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Fig. 5. Example of how horizontal extension varies due to changing dip 
of the detachment, d, for parallel faults with initial dips of 60", and 

various rotations. 

Substituting these into (8) gives 

= [[Sinsm'(~ (q~ + 0 )d) 1 % Ed - - ~  - 1 x 100. (14) 

Extension parallel to the detachment can differ 
markedly from the horizontal extension. In the antithe- 
tic case % Ed can be zero for faults that rotate through a 
line perpendicular to the detachment. Calculation of % 
Ed may be useful for determining a minimum offset on a 
detachment fault, or for economic studies of mineralized 
detachment zones. 

NON-PARALLEL FAULTS 

When domino-style normal faults are observed in the 
field, they are generally not parallel (e.g. Wernicke et al. 
1984, Axen 1986). The geometry of non-parallel 
domino-style faults is complicated compared to their 
parallel counterparts, because the thickness of the 
blocks changes with depth. This is dealt with below, and 
is somewhat offset by the advantage of allowing a unique 
solution for depth to the basal detachment. 

Dip of  the detachment 

L. = GI - 
t t 

sin (q~i - d) sin (q~ + 0 - d)" 
The easiest method for determining the dip of the 

detachment requires use of three adjacent domino-style 
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Fig. 6. Non-parallel domino-style faults above a dipping detachment. S~, S~, slip on the upper and central faults, 
respectively; 0 v  0~, 0~, dip of the gentler, central and steeper faults, respectively; i=,_..j~ v intersection points of the 
projections of the steeper and central faults, and steeper and gentler faults, respectively, j m is an arbitrary horizontal line 

drawn through the cross-section. 
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faults and the two included fault blocks (Fig. 6). The 
following can be obtained from the law of sines: 

m--i= = km sin (~c)/sin (A~=), 
ml'-~ = j"m sin (~8)/sin (A~ss), 

m---=~ = f= sin ( ~  - d)/sin (A~: ) ,  

n--~g = f~g sin (q~g - d)/sin (A~s) ,  

fcg = Su sin (~0 8 + 0 - d)/sin O 
f~ = Sc sin (~¢ + 0 - d)/sin 0. 

Because l~gls~ = mi= -- misg = hi= - ni~g and fsg = fc8 + 
f=, the above equations can be combined and simplified 
to give 

km sin ~c _ J"m sin q~ 
sin (A~c)  sin (A~g) 

Sc sin (¢~ + 0 - d)  sin (¢c - d )  
sin 0 sin (A¢~) 

sin (~bg - d)[Sc sin ( ¢ c  + 0 - d )  

_ + S, sin (¢~ + 0 - d)]. (15) 
sin 0 sin (Aq~ss) 

An analogous solution for the case where the upper  fault 

is the steeper fault gives 

km sin ~c j=-m sin ~ 
sin (A¢=) sin (A¢~g) 

Su sin (¢s + 0 - d)  sin (¢~ - d)  
sin 0 sin (A¢~:) 

sin (¢g - d)[S~ sin (¢s + 0 - d)  
_ + Sc sin (q~ + 0 - d)] (16) 

sin 0 sin (Aq~g) 

Although these equations are too cumbersome for 
quick use, d can be found by iteration. Two solutions can 
occur, one synthetic and one antithetic, but  one can be 

discarded on geometric grounds (for example,  jm will 
e.nd up going through or below the detachment,  or the 
wrong solution will give too steep a dip for the detach- 
ment).  The central fault can have any dip, as long as it is 
not parallel to either of the other faults and can be 
inferred to intersect the detachment  (for the latter 
reason, downward-widening fault blocks are bet ter  to 
use ) .  

Depth to the detachment 

Because fault-block thickness varies for non-parallel 
faults, the size of the hypothetical void at the base of a 
tapering block is uniquely determined by the thickness 
of the block at its base. The basal thickness is measured 
from the intersection of the lower bounding fault with 
the detachment,  along a line perpendicular to the upper  
bounding fault (see the right block in Fig. 6). It can be 
determined algebraically if St, d, 0 and ~u (the dip of the 
upper  bounding fault) are known. Once the basal thick- 
ness is obtained, the dimensions of the block are fully 
known, so that maximum and minimum depths to the 
detachment can be found. The maximum depth corre- 
sponds to the bases of the rigid fault blocks, and the 
minimum depth corresponds to the tops of the hypo- 
thetical void triangles. Equat ion (4) can be used to this 
end, by rearranging to solve for t: 

t = St sin (q~u + 0 - d )  sin (q~u - d)  (17) 
sin 0 

Estimating the amount of  extension 

Horizontal extension for non-parallel faults can be 
estimated using equation (9), but one must be sure to use 
q~ from the fault below the block in question in equation 
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Fig. 7. Non-parallel domino-style faults above a horizontal detach- 
ment. See text for explanation. 

(1) for St. Similarly, equation (12) can be used, but the 
thickness (t) used must be that obtained from equation 
(17) for the footwall block. Extension parallel to the 
basal detachment can be estimated using equation (14) 
directly. 

The amount of extension is strongly dependent on the 
basal thickness of the block below the fault in question. 
For downward-widening blocks, Sn and St will be large, 
and for downward-narrowing blocks they will be small. 
In the extreme latter case the faults will intersect at the 
detachment, and slip will be zero, unless significant 
distortion of the block occurs as it moves through the 
bend between the domino-style fault and the detach- 
ment. 

Unlike parallel domino-style faults, where % H.E. is 
the same for all blocks regardless of dimensions, non- 
parallel faults each cause a different % H.E. between 
cut-off points. Therefore, to arrive at the % H.E. across 
an array of non-parallel domino-style faults, one must 
do a weighted summation of extension due to each fault 
in the array. 

Figure 7 shows a set of domino-style faults with non- 
parallel dips above a horizontal detachment. 
Thompson's (1960) equation (Fig. 1) is used to obtain 
the horizontal extension of individual fault blocks, and 
each individual extension is multiplied by the fraction of 
the final total length to which it contributed. The total 
extension across the length, l, of the extended section 
(Fig. 7) is: 

% extension= ,,=l ~ f sin sin(~m + 0 ) -  l ] q ~ , ~  (e,~) x 100. 

where cp,, is the final dip of the ruth fault and em is the 
fraction of the total length of the extended section which 
is due to each fault: 

' a'~ 
al  and --= el = 7 l "  

where a l and a'., are horizontal distances between similar 
piercing points. Similar summations can be done for 
non-parallel faults above dipping detachments using 
equations (9) or (12). 

DISCUSSION 

The equations presented above are most useful for 
structural analysis of detailed maps. In particular they 
can be used to provide some subsurface information 
when other considerations suggest that a detachment 
exists at depth. The equations giving dip of, and depth 
to, a detachment might be particularly useful in minerals 
exploration for ores deposited adjacent to detachment 
faults. By analyzing several domino-style faults, one 
could potentially characterize irregularities in the dip of 
the detachment, such as have been imaged seismically 
(e.g. Allmendinger e t  a l .  1983). 

Uplift and warping of detachment faults due to iso- 
static rebound following tectonic denudation (e.g. 
Spencer 1982, 1984) should be considered when applying 
these equations. A broadly warped detachment can 
probably be approximated as planar over a sufficiently 
small area. If uplift (or other subsequent deformation) 
passively rotates the part of the domino-style fault- 
detachment system being considered, then the ge- 
ometries described here still hold, because fault-to- 
detachment angles will not be changed. This has the 
effect of automatically including changes in the per cent 
horizontal extension which are due to the passive ro- 
tation. Equations for depth to, or dip of, the detachment 
will simply yield post-passive-rotation figures. 

These equations could also be useful in drawing sec- 
tions across unexposed domino-style faults. If adjacent 
faults are well enough exposed to determine the dip of 
the underlying detachment, then equations (4), (15) and 
(16) can be used to determine the dip of the unexposed 
fault. 

As with any theoretical model, these equations are 
only as good as the underlying assumptions. Care should 
be taken to ensure that only planar faults are used. This 
may be true if rotations (bedding dips) across faults are 
constant: differential rotations require curviplanar or 
splayed faults. The converse is not necessarily true, as 
only small amounts of internal distortion of blocks 
rotated by gently curviplanar faults can result in essen- 
tially parallel bedding dips across faults (e.g. Proffett 
1977, Gans & Miller 1983). Palinspastic reconstruction 
can help to determine if faults are planar or curved (e.g. 
Axen 1986). In general, this type of theoretical analysis 
should be accompanied by palinspastic reconstruction of 
balanced cross-sections. When the three techniques are 
played against one another, they provide a powerful 
tool. 

Clearly a major assumption that cannot be true in any 
but the shallowest natural settings is that rigid blocks 
require a void to open at depth (Fig. 3). Field obser- 
vations indicate that. at best, the upper parts of domino 
blocks behave rigidly. The 'void problem' is apparently 
commonly 'solved' by formation of thick breccia zones 
(e.g. Axen 1986, Axen & Wernicke 1986), downward- 
splaying faults (e.g. Gans & Miller 1983) or formation of 
chaos structure (e.g. Noble 1941. Wernicke & Burchfiel 
1982). Although slip measured at the surface should 
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equal total slip near the detachment, the hypothetical 
voids are probably reduced in size and 'filled" by rock 
transferred from areas that would form the lower corners 
of the blocks. The possible range of depth to the detach- 
ment, based upon calculation of the basal thickness of 
fault blocks, can probably be constrained to the range 
from the tops to the bottoms of the voids. Because 
brecciation causes volume increase, deeper estimates 
within this range may be closer. Simple area balancing of 
the voids and protruding lower corners of the blocks 
should be attempted. 

The space problem at the base of fault blocks becomes 
greater with increasing rotation. When compared to the 
problem for faults above a horizontal detachment, this 
effect is somewhat lessened for faults antithetic to the 
basal detachment, and is greatly increased for the syn- 
thetic case (Fig. 2). Large rotations on domino-style 
faults probably require: (1) intense internal deformation 
of blocks; (2) curviplanar or splaying faults, which may 
result from (1), and/or (3) that fault blocks thin down- 
ward to a small basal thickness. Therefore these. 
equations are best applied to faults which have under- 
gone no more than moderate rotations. Such internal 
deformation would not necessarily be present far from 
the detachment, and might not be noticeable at the 
surface. This introduces additional uncertainty into cal- 
culations of depth to the detachment. 

For downward-thickening fault blocks the basal space 
problem is larger and for downward-thinning blocks it is 
smaller. For best results in calculations of d or depth to 
the detachment, several differently shaped blocks 
should be used if possible. This approach will also help 
to avoid spurious results from faults which intersect 
above the detachment. 

Because many of the equations are based on triangles 
with acute angles, small errors in measurement of the 
various angles, the total slip, or the thickness of blocks 
can introduce fairly large errors. It is advisable to do the 
calculations for (1) the best measurements and (2) the 
acceptable range of measurements, substituted so as to 
maximize and minimize the quantity being calculated. 
For small errors in a single measurement, the error 
introduced into the result of the equations presented 
tends to be of the same order. However, for compound- 
ing errors of 1-2 ° in angles and less than 10% in slip 
measurements, the errors propagated can be problemat- 
ically large. 

The effect of the dip of the basal detachment on 
estimates of horizontal extension deserves emphasis. 
For given rotations and fault dips, the extension will be 
significantly larger in the synthetic case, or moderately 
smaller in the antithetic case, when compared to the 
extension above a horizontal detachment (Figs. 2 and 5). 
This is important because the synthetic case is commonly 
reported. 
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